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ABSTRACT

It is well known that orderings based on graph colorings can slow the convergence of
many iterative methods. However, orderings based on graph colorings can be used
to build scalable, parallel iterative methods. For example, SOR with consistent
orderings, SSOR, and incomplete Cholesky can all be implemented in a scalable
manner using graph colorings. It has been observed experimentally that if, for
a fixed problem, the number of colors used is increased, then the SSOR PCG
method will converge faster. In this paper we prove that for a model problem the
multilevel SOR algorithm with consistent orderings will converge more quickly as
the number of colors used is increased. We also give a formula for computing the
optimal relaxation parameter and rate of convergence as a function of the number
of colors. We prove a similar, but limited, result for ICCG.

These results are useful because they allow the algorithm designer to trade off
parallel efficiency for fewer iterations. For example, the nine-point Laplacian can
be colored using a minimum of four colors. However, a matrix ordering based on
four-colorings may result in poor convergence. If eight rather than four colors are
used, the convergence rate will be increased without, perhaps, unduly affecting the
parallel efficiency.
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1. Introduction. Many iterative methods exhibit excellent parallel efficiency
if the matrices have been reordered according to a graph coloring [13]. However,
for most of these iterative methods, the convergence rate after reordering is slower
than that of the “natural” ordering. For example, for the standard five-point
difference operator the incomplete Cholesky preconditioner has a condition number
of m with the natural ordering [2] and a condition number of - with a
red/black ordering [8].

Harrar [5] has observed experimentally for the SSOR PCG method that the
convergence rate improves if more colors are used to color the graph of the matrix.
Using the natural ordering and the colorings described in §2, we show in Figure 1
the reduction in the residual for the ICCG method. These results are for the
standard nine-point difference operator on a 128 x 128 grid. We observe that as
the number of colors is increased, the number of iterations necessary to achieve the
same accuracy decreases. For large problems, one can use more colors with some
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Fia. 1. The convergence rate and the cost of ICCG with varying numbers of colors

sacrifice of parallel efficiency and reduce solution time by reducing the number of
iterations. For example, in the right plot in Figure 1 we show the predicted times
associated with these multicolorings when we use a variant of the parallel execution
model given by Elman and Agrén [3] for solving the same 128 x 128 grid problem
with 16 processors. For the model, we chose the parameters 7 = 10, ¢ = 10, and
s = 1; the same parameters suggested by Elman and Agrén in §6 of their paper.

For two different iterative methods, a stationary method and a preconditioned
method, we use Fourier analysis techniques to prove that increasing the number
of colors will result in faster convergence. This analytic information can be used
by practitioners to make algorithmic design trade-offs on high-performance archi-
tectures.

The first method that we examine is a multilevel version of the red/black SOR
method [15]: a generalization suggested by Kuo and Levy [9]. By using a multilevel
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approach, a consistent ordering can be obtained for any number of colors. The
optimal relaxation factor can be cheaply computed for any consistently ordered,
symmetric positive definite matrix [4]. Consider the four-color example given in
Figure 2. At the outermost level of the multilevel algorithm, the four colors are
split into two groups to form a 2 x 2 block matrix. This 2 x 2 matrix is trivially
consistently ordered, and an optimal relaxation parameter can be computed. At
the second level, each block is split into two matrices to form 2 x 2 block matrices
for which optimal relaxation parameters can be computed. At the innermost level,
the matrices are diagonal. Given that each processor will have approximately

Outer level

U ondlevel

Inner level
(diagonal matrix)

Fia. 2. A multilevel SOR algorithm for four colors

the same number of grid points of a given color, the load balancing throughout
the algorithm will be quite good. Further discussion of this algorithm is given in
63. We note that for the specific case of four-coloring the nine-point Laplacian,
an alternative to the multilevel SOR algorithm is a nonconsistently ordered SOR
algorithm for which the optimal relaxation parameter can be determined by solving
a quartic equation [1].

The multilevel SOR algorithm has advantages over the traditional approach
of obtaining a consistent ordering by breadth-first search (BFS) and then using
red/black SOR. In the BFS approach, subproblems associated with narrow strips
of grid points must be solved. For the large matrices that must be solved on parallel
computers, these subproblems cannot fit onto a single processor. For example, if
we wish to solve a symmetric matrix generated from a finite difference stencil on
a cube, the subproblems are planes of the cube. The subproblem size increases
as the cube size is increased, but the memory on a single processor is fixed; for a
scalable parallel implementation the subproblems must be split across processors.
Therefore, one is faced once again with the problem of solving sparse matrices
in parallel. In the multilevel algorithm, the parallel solution of the subproblems
is inherent in the algorithm. The only operations required are sparse matrix by
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vector multiplication and the solution of the diagonal submatrices; both operations
are parallel.

The BFS algorithm has an additional drawback when solving unstructured
problems in parallel. The parallel determination of the subproblem strips is diffi-
cult. In general, no good parallel method for BFS exists; therefore, the ordering
of the nodes can take an inordinate amount of time on a parallel computer. In
contrast, good parallel graph coloring heuristics exist. Recently Jones and Plass-
mann have given a scalable, parallel heuristic for finding colorings for unstructured,
sparse matrices [7].

In addition to the multilevel SOR algorithm, we analyze the conjugate gradient
algorithm preconditioned by an incomplete Cholesky factorization [11, 12]. Jones
and Plassmann have given scalable, parallel methods for the ICCG algorithm for
solving unstructured, sparse, symmetric positive definite matrices [6].

The remainder of the paper is organized as follows. In §2 we analyze the
convergence properties of the multilevel SOR algorithm with varying numbers of
colors. We further discuss the multilevel algorithm and give experimental results
in §3. In §4 we give a similar but more limited analysis for ICCG.

2. Analysis of Multilevel SOR. In this section, we use Fourier analysis to
find the spectral radius of the multilevel SOR algorithm for the five-point Laplacian
operator for any number of colors. This general analysis is restricted to a particular
coloring pattern. We also give a shorter, restricted proof for a different coloring
pattern for which the outer iteration uses blocks rather than strips. We believe
that the extension of these results to other operators and coloring patterns is
straightforward in many cases. More important, we have found these results to
hold true in practical, complicated problems.

Consider an N x N grid, whose nodes are colored by using the following

pattern.
n 1 3 5 n—1 2 4
n—1 2 4 6 n 1 3
(2.1) n 1 3 5 n—1 2 4
n—1 2 4 6 n 1 3

We index the z-direction by j and the y-direction by k. For convenience we use
the notation

(2.2) Sin = sin(ynrh)
Cin = cos(ynrh),

where h = 1/(N +1). Let x;; be the discretization of the scalar function = at the
point (7, %) on the grid. If the color of the grid point (7, k) is ¢, we denote this
point by x;c,z and define the Fourier transform of this point by the equation

(23) J};?]z == Z :2;7(725]'7775“.
(n,6)eK ()
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We do not explicitly compute the set K9 here; we only note that the lowest
frequency pair included is (n,&) = (1, 1).

Consider the action of the standard five-point Laplacian operator A on the
scalar function @ at grid point (j, k):

ht 1
(2.4) - ZA(% ke = x5 — Z(xj—l,k + @18+ Tjho1 + T 1)

In the frequency domain, we note that the transformed Laplacian operator is ap-
proximately block diagonal, with a block A(n, €) for each frequency pair (n,¢). By
“approximately” we mean that for more than four colors, there is a term involv-
ing 51,,C;., 5k that does not cancel in the Fourier representation of Equation 2.4.
However, we are interested only in the low-frequency limit. For fixed 7, we have
that 51, — 0 as N — oo. In this limit, which we assume for the rest of this
section, these blocks can be expressed as

~ A

A M (n,€) Nu(n.€)
25 A 7775 _— A ’ ~ ’
25 WO = M) W, 6)
This block operator acts on the vector (5, &) given by
) T
L
~(2)
L.

(2.6) &)= T

L Tné

Substituting Equation 2.3 into Equation 2.4, we are able to compute the two
n/2 x n/2 matrices M, (n,&) and N,(n,¢)

[ 1 a, B |
a, 1 0 B
Be 01 oy [
(2'7) Mn(mf) = 0 ﬂf ap 1 0 )
Be 0 Be
. I«
L Be a, 1 ]
_ 0 B ]
Be 0
A 0
(2.8) No(n,€) = 0 ,
0
Be 0
L 0 B 1




where o, = —C,/2 and e = —Cy ¢ /4.

We consider only the outer level of the multilevel SOR iteration by grouping
all grid points colored by the first n/2 colors into a first group, and the remainder
of the grid points into a second group. For example, with n = 8, we have the
following partition of the grid.

(2.9)

-] GO = Co

1
2
1
2

e o e o
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oo ~J 00 =~
[l NI W
CO o Qo
ot Oy Ut O

Note that the grid is partitioned into strips; for n = 4 we obtain the equivalent of
the standard line red/black ordering.

This multilevel SOR iteration is consistently ordered. Thus, we can compute
[15] the optimal relaxation parameter, w*, for SOR from the spectral radius, py,
of the Jacobi iteration matrix from the equation

2

Tt i

The computation of ps is more straightforward in the frequency domain. Because

(2.10) w”

of the special structure of M, and N, and the approximate block diagonal structure
of the Jacobi iteration matrix, we find

(2.11) py R %gp(M{l(mf)Nn(mf))-

It is clear that the maximum in Equation 2.11 is obtained for the lowest frequency

mode, (n,£) = (1, 1), where the block diagonal approximation is most accurate.
To simplify the notation in the following discussion, let M, = M, (1,1), N, =

N,(1,1), = f31, and a = a;. For n = 271 we define p; = p(M;an). It will be

useful to define the following recursion relation:

cos(wh)/2
2.12 = —
( ) 51 2 — cos(h)
™ = 5
57
it = 1 — 7“22
rivr = ri(l4 sip1).

THEOREM 2.1. Let r; and s; be defined by the recursion relations shown in
Equation 2.12. The spectral radius of the Jacobi iteration satisfies p; = r; + s;.

Proof: Suppose v is the eigenvector corresponding to the largest eigenvalue of
Mn_an. By inspection, we note that the product N,v has the special form
[z20--- 0zz]T. Thus, the computation of the spectral radius is equivalent to
computing the sum of four components of Mn_l multiplied by £,

~

(213) = B[V + (M e+ (M1 s oa + (M) 2
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The value of these components can be computed by an induction argument and
use of the Sherman-Morrison-Woodbury formula

(2.14) (A+ UV = A7 - AU+ VAT UV AT
Let
(2.15) M, =A+UVT,
where the matrix A is
M,
(2.16) A= [ 8/2 Mg/z ] :

and the matrices U and V are given by

0 0|1 0 1 010 0

0 010 1 0 1(0 O
(2.17) v = 1 0|0 0]’ V=>5 001 0"~

0 110 0 0 010 1

where U and V' are 7 x 4 matrices. Here we show the middle 4 rows; the rest of
these matrices are zero. Let S be the last two columns of M;/IQ, and let S be the

first two columns of M;/IQ. We note that the matrix M;/lz is persymmetric (i.e.,

symmetric about the “other” diagonal), so that S is the persymmetric version of
S. Also, let K be the leading principal 2 x 2 matrix of ﬂMn_/lz. We compute the
following matrices,

(2.18) AU = lg g]
e o[ 4]
VIA-W = [0 K].

Continuing with our computation, we have

—1
0 K K. -KK,

(2.19) []Jr ( K 0 )] = l KK, K. ] !

where

(2.20) K.=(I-K*"

Combining these facts with Equation 2.14, we have

SKK.ST —SK.ST
Ty—1 _ 4—1 > e _ e
(2.21) (A+UVT)" =4 +ﬁl —SK.ST SKKSST]
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We observe that A is structured so that if we look at A as a block matrix
with 2 x 2 blocks, each of these 2 x 2 blocks is symmetric and has equal diagonal
elements. Therefore, each block, and in particular K and K., can be diagonalized
when conjugated by the orthogonal matrix

1 11
2.22 = — :
222) “=% l -1 ]
Thus, to compute p; as given in Equation 2.13, we need only compute the largest
diagonal elements of the upper left 2 x 2 block and upper right 2 x 2 block of (A +
UVT)=! when conjugated by ). We denote these values by r; and s;, respectively.
Direct calculation establishes the recursion relation given in Equation 2.12. O

TABLE 1
A comparison of the predicted and calculated values of py for 8 colors

‘ Mesh Size ‘ Prediction ‘ Calculated ‘

4 x4 0.51433 0.50965
8 %8 0.79573 0.79456
16 x 16 0.93520 0.93511
24 x 24 0.96919 0.96917
32 x 32 0.98213 0.98213

In Table 1, by direct calculation of p; we show that our low frequency Fourier
representation of the Laplacian is quite accurate. The values for p; predicted by
Theorem 2.1 converge rapidly to the computed values. We note that Parter [14]
obtains an approximation to the dominant eigenvalue pr of the k-line Richardson
method (equivalent to the Jacobi iteration) for elliptic partial differential equa-
tions with constant coefficients. For the Laplace equation with Dirichlet boundary
conditions, this approximation is given by

k
(2.23) pr~ 1 — 5Ah? :

where A is the minimum eigenvalue of the Laplacian on the given domain. In our
case, the domain is the unit square; thus we have A = 272,

In Figure 3 we compare the estimate obtained by Parter in Equation 2.23
with the Fourier analysis estimate given by Theorem 2.1. The exact values for the
spectral radius are indistinguishable from the Fourier values in this figure.

We note that a multilevel algorithm based on these colorings has the disad-
vantage that the inner iterations will require information exchange along the entire
strip. For large problems it is unrealistic to expect that these strips will fit onto one
processor. One can avoid interprocessor communication at all levels of the multi-
level iteration, except the outer level, by using a “block” coloring. One possible
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block eight-coloring is the following.

(2.24)

—- O o
S 00 b
W = ~J ot
NCRNTSe s

Let o; be the spectral radius of the block Jacobi iteration corresponding to the
outer level of block coloring with 2+% colors. We obtain the following interesting
result.

THEOREM 2.2. We have that asymptotically oy = py. That is, the spectral
radius for the outer level of a block 8-coloring is asymptotically equivalent to line

R/B.

Proof: Consider the Fourier representation of the 5-point Laplacian for the color-
ing given in Equation 2.24:

A B . MnB 77,5) Nf(mf)
0.2 MO =| 5510 iP(g)

We compute that the matrices Mf and Nf have the form

L0 677 5&

“rB o 0 1 ﬂé 577

Pe By 0 1

0 0 677 5&

7B o 0 0 ﬂé 577

Pe By 00



where 3, = —C} /4 and B¢ = —Cy¢/4.

Consider the computation of the spectral radius of the Jacobi iteration matrix
for the lowest frequency mode. We note that conjugation by the block diagonal
orthogonal matrix, with the diagonal blocks given by Equation 2.22, yields a system
with spectral radius equivalent to that obtained from a line red/black analysis. O

TABLE 2
A comparison of the calculated values of py for line R/B and the block 8-coloring

‘ Mesh Size ‘ Line R/B ‘ Block 8-Coloring ‘

4 x4 0.67928 0.66667
8 %8 0.88625 0.88515
16 x 16 0.96652 0.96646
24 x 24 0.98435 0.98434

This result is verified by the computational results shown in Table 2. Finally,
we note that experimentally it can also be demonstrated that o, = p; asymptoti-
cally for + > 1.
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Fia. 4. Convergence of different numbers of colors

The improvement in convergence rates as the number of colors increases is
not limited to the strip and block colorings. Experimentally, we have found the
improvement with every coloring pattern that we have used. For example, if we
use the following coloring pattern

1 2

T 34+1 - n—1n

211 242 n 1 . n

2 2 2 2

(2.28) 1 2 g 5+l - n—1 n
SH+1 S +2 n 1 e 2=1 3

on the five-point difference operator on a 128 x 128 grid, we observe in Figure 4
that as the number of colors is increased, the convergence of the multilevel SOR
algorithm improves.
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3. Results for Multilevel Algorithm. In this section we briefly discuss
the multilevel SOR algorithm when used with the block colorings described in
the second part of §2. Following Kuo and Levy [9], we consider solving the inner
subproblems iteratively; we may perform only a few iterations for each subproblem.
We are now concerned with the convergence of the multilevel SOR algorithm when
the inner subproblems are not solved to full accuracy.

From Lanzkron et al. [10] we know that the multilevel SOR algorithm can be
characterized as an inner/outer iteration method. To guarantee convergence for
a two-level inner/outer iteration method, the outer iteration must be a regular
splitting and the inner iteration must be weak regular. For the model problem the
splitting

A= D-L-U=M-N
M = wY(D—-wl)™
(3.29) N = wlwU+(1-w)D)
induced by the outer iteration is not a regular splitting because N is not positive

when w > 1. However, we expect that if the inner problems are solved to reasonable
accuracy, then the method will converge.
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Fic. 5. Comparison of R/B SOR with 8-color multilevel SOR wilh varying numbers of inner
wterations

In Figure 5 we show the convergence of the multilevel SOR algorithm with
different numbers of inner iterations and compare this convergence with that of the
standard red/black SOR algorithm for the 5-pt stencil. We also show that, given a
parallel execution time model! similar to that used in Section 1, the multilevel SOR
algorithm can have performance advantages over algorithms using fewer numbers

! The results are from a 16 x 16 grid using 16 processors with model parameters s = 1,
7= 1000, and ¢ = 0.1.
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of colors. This advantage is magnified as the ratio of the message startup cost
relative to the cost of computation increases.

4. Analysis of Incomplete Factorization. In this section we examine the
effect of many color orderings on the condition number of the model system pre-
conditioned by incomplete Cholesky factors. We prove the limited result that a
particular four-color ordering results in a smaller condition number than a two-
color, R/B ordering. We have observed experimentally (see Figure 1) that the
convergence continues to improve as the number of colors increases beyond four.

We consider a slightly different four-coloring from that used in the preceding

section.
2 4 2 4
1 3 1 3
(4.30) 5 4 9 4
1 3 1 3

Consider the discrete Laplacian matrix A ordered according to this coloring. The
incomplete factorization A ~ LLT results in the local operator, L, acting at the
grid point (j, k) given by

17 (]7 k) color 1

(131) L= Vi iBEED, (j, k) color 2
| me % —1(B. + EJY), (7, k) color 3 7

V2= VEE A B2 4 B, + ESY), (5. k) color 4

where E, and F, are the shift operators in the x and y directions. As observed
by Kuo and Chan [8], this representation is accurate only far from the boundary.
Therefore, the results derived from equation 4.31 are valid asymptotically.

We note that the Fourier representation of the preconditioned system, j/_lAf/_T,
is block diagonal, using the basis given in equation 2.3. The block corresponding
to the frequency pair (7, &) is given by

10 0 0
) o 0 —2(—2—|—7a)(2+a) —27ab 2b\;§\a/2_b
(4.32) Lg;AgngmT: 0 =2a _3(245)(24D) 3000 :
7 2 27 7\/5\/32 2
0 2b—8a?b 2a—8b%a 49-12a%-12%
V25 V25 35

where a = cos {érh and b = cospwh.
If A¢,, are the eigenvalues of block matrix in equation 4.32, the condition
number of the preconditioned system is given by

A
(4.33) WL ALT) = D] A |

ming | Aen | ‘
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It is evident that the maximum and minimum eigenvalues occur for ¢ = b = 0 and
(n,€) = (1,1), respectively. Thus, we find that

7
4.34 A = -
(131 mas| Ae, | = 1.
and
1
(4.35) min| Ae, | = == [89 — 44 cos®(wh) — 16 cos4(7rh)]
&l 70

1
2

—71—0 [81 + 8cos?(wh) — 912 cos*(7h) + 1408 cos®(7h) + 256 COSS(TF}L)] )

We compute that ming, | Ae, | = 22(xh)* + o(h?). Thus, we obtain the approxi-
mation
29
4.36 LAy ———
( ) K( ) 4:07T2h2

If two colors are used, Kuo and Chan [8] prove that the condition number is
In Table 3 our approximations to the eigenvalues are compared to the cal-

asymptotically equal to

culated eigenvalues for several mesh sizes. We observe that the computed values
converge to predicted values with increasing mesh size.

TABLE 3
Comparison of calculated eigenvalues and predicted ergenvalues for ICCG

Approximate | Calculated | Approximate | Calculated
Mesh Size | Maximum A | Maximum A | Minimum A | Minimum A
4 x4 1.4000 1.1197 0.7623 0.4435
8 x 8 1.4000 1.3219 0.2347 0.2154
16 x 16 1.4000 1.3782 0.0659 0.0644
32 x 32 1.4000 1.3943 0.0175 0.0174

Experimental evidence similar to the graph in §1 supports the conjecture that
increasing the number of colors beyond four will continue to improve the conver-
gence rate of [CCG. However, proving this conjecture is more difficult than for the
multilevel SOR algorithm. The reason for this difficulty is that the block diago-
nal approximation is asymptotically accurate only for the low-frequency analysis,
not for the high-frequency analysis. Because we can accurately determine only the
smallest eigenvalue of the preconditioner, an exact bound for the condition number
when more colors are used is not yet possible.

5. Conclusion. The convergence of iterative methods when used with mul-
ticoloring can be improved if the number of colors is increased. For two specific
iterative methods, multilevel SOR and ICCG, we have proven that if the number
of colors is increased, then the convergence will be faster. This general result is not
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limited to specific colorings schemes; it appears to apply to many different coloring

schemes.

Using experimental models, we have also shown that the overall execution

time can be decreased when more colors are used. A trade-off exists between
accelerating convergence by using more colors and improving parallel efficiency by
using fewer colors. This trade off should be examined when implementing iterative

methods using multicoloring.

(1]
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